

1

ARA is an advanced wireless research platform covering Iowa State University,
Ames, and nearby rural areas. The team is tasked with creating a weather-triggered
telemetry system that measures the performance of wireless technologies developed on
ARA before, during, and after weather events of interest. The team will be utilizing
multiple external forecast API’s in order to automatically have the ARA equipment
recognize when a weather event is going to occur. This system will eventually allow
researchers to determine how the performance from the ARA framework differs during
different weather events.

The current problem our team looked to solve was determining how weather
events affect experiments conducted on the ARA testbed. Researchers want to know how
the results of their experiments will be affected due to weather events occurring. The
requirements of our design include utilizing forecast API’s to predict future weather
events, triggering our software to collect and store weather and wireless data 30 minutes
before, during and after weather events. This data must then be stored in a ZIP file
hierarchy, which then ARA researchers would be able to query for this data using a
user-friendly interactive UI.

Our team created a design that includes using three unique forecast APIs that
would predict when a weather event would occur, and then based on that information, we
would trigger the wireless signal data collection and store that data in the ZIP hierarchy.
Our team initially developed a Python program that queried these three APIs, pulling
their forecasts for a future predicted time every hour. The team then visualized this data
using graphs, comparing the different APIs against true ARA data. The graphs gave the
team, along with the client, a visualization to see the predicted weather from the API
compared to the actual weather measured at the ARA weather stations. This served as an
accuracy test to see how well the weather prediction model would work in terms of
predicting a weather event and then begin collecting wireless signal data.

From there, our group implemented our designs, using the prediction program
which queried the three APIs to inform a second script which would gather the ARA
weather and wireless data. A third script we created receives this data and formats it
together. Lastly, we created a UI for a user to be able to get visualization of the collected
data.

2

Learning Summary

Development Standards & Practices Used
● IEEE 1413-2010: IEEE Standard Framework for Reliability Prediction of

Hardware
● IEEE 1063-2001: IEEE Standard for Software User Documentation
● IEEE 1012-2016: IEEE Standard for Software Verification and Validation
● ISO/IEC/IEEE 14764-2021: Standard for Software Engineering Maintenance
● IEEE 1448a-1996: Standard for Information Technology Life Cycle
● Software version control utilizing Git

Summary of Requirements
Functional

- Must trigger collection based on abnormal weather conditions
- Must trigger data collection when rain is detected within desired lead-in data

collection time.
- Must trigger data collection when snow is detected within desired lead-in data

collection time.
- Must trigger data collection when winds above 15 mph are detected within

desired lead-in data collection time.
- The software shall have a specified lead-in time where data is being collected a

specified amount of time before the weather event.
- The software shall have a specified lead-out time where data is being collected a

specified amount of time after the weather event.
- The software shall use three weather forecasting APIs to predict when a weather

event will occur.
- The software shall incorporate a UI that allows users to query weather events on

specific days.
- Must utilize local weather data for validation.
- While the software detects there is a weather event it shall keep collecting data

until the weather event or the lead-out time is complete.
- When the software first starts it shall query the ARA weather API and the weather

forecasting APIs.
- When the software detects a weather event it shall begin lead-in data collection

before a specified amount of time before the weather event.

3

- When data collection for a weather event is complete the software shall send data
to be processed.

- If there is no weather event then the software shall wait for the next weather event
prediction.

- If there is a weather event but not within the specified time to start lead-in time
data collection then the software shall wait to begin collection until the specified
lead-in time.

- The software shall store weather collection data in a ZIP file hierarchy.

Resource
- Uses the ARA framework to collect, store, and provide access to weather data.
- Shall have access to external weather forecasting APIs
- Weather data shall be stored in the storage space provided by the ARA framework
- Shall run on the server space provided by the ARA framework

Physical

- Must use ARA’s Disdrometer when collecting live weather data from the ARA
framework

Aesthetic

- The software shall utilize data visualization tools such as graphs and histograms
- The software shall graph the predicted weather at specified intervals and plot the

difference between the predicted and actual weather.
- The graph shall utilize multiple colors to see the difference between actual and

predicted weather.

User Experiential
- GUI shall be accessible from the ARA systems
- Shall be easy to use for someone who has experience running scripts using the

command line.
- The GUI shall be intuitive to query data for users.
- The GUI shall be easy to navigate for new users on the first attempt of using it.

UI

- The UI shall execute queries in a timely manner such as depending on the size of
the dataset under 2 seconds.

- The UI shall allow users to write queries or select pre-determined queries.

4

Applicable Courses from Iowa State University Curriculum
● COMS 2270 (Introduction to Object-Oriented Programming)
● COMS 2280 (Introduction to Data Structures)
● COMS 3090 (Software Development Practices)
● COMS 3110 (Introduction to Algorithms)
● CPRE 2810 (Digital Logic)
● CPRE 3080 (Operating Systems: Principles and Practice)
● SE 3170 (Introduction to Software Testing)

New Skills/Knowledge acquired that was not taught in courses
● Python scripting development
● Linux server experience
● Data parsing and formatting
● Model predictions

5

Table of Contents
Table of Contents 5
List of figures/tables/symbols/definitions 6

Figures and Tables 6
Important Definitions and Terms 7

1 Introduction 7
1.1 Problem Statement 7
1.2 Intended Users 9

2 Requirements, Constraints, And Standards 10
2.1 Requirements and Constraints 10
2.2 Engineering Standards 12

3 Project Plan 14
3.1 Project Management/Tracking Procedures 14
3.2 Task Decomposition 15
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 18
3.4 Project Timeline/Schedule 19
3.5 Risks And Risk Management/Mitigation 20
3.6 Personnel Effort Requirements 22

4 Design 28
4.1 Design Context 28

4.1.1 Broader Context 28
4.1.2 Prior Work/Solutions 29
4.1.3 Technical Complexity 29

4.2 Design Exploration 29
4.2.1 Design Decisions 29
4.2.2 Ideation 30
4.2.3 Decision-Making and Trade-Off 30

4.3 Final Design 34
4.3.1 Overview 34
4.3.2 Detailed Design and Visual(s) 36
4.3.3 Functionality 38
4.3.4 Areas of Challenge 40

4.4 Technology Considerations 41
5 Testing 42

5.1 Unit Testing 42
5.2 Interface & Integration Testing 42
5.3 System Testing 42
5.4 Regression Testing 42
5.5 Acceptance Testing 43
5.6 User Testing 43

6

5.7 Results 44
6 Implementation 44

6.1 Overview 44
6.1.1 Weather Prediction and Collection 47
6.1.2 Wireless Data Collection 47
6.1.3 Data Storage and Display 48

6.2 Design Analysis 49
7 Ethics and Professional Responsibility 49

7.1 Areas of Professional Responsibility/Codes of Ethics 49
7.2 Four Principles 53
7.3 Virtues 54

8 Conclusions 57
8.1 Summary of Progress 57
8.2 Value Provided 57
8.3 Next Steps 57

9 References 58
10 Appendices 58

Appendix 1 – Operation Manual 58
Appendix 2 – Alternative/initial version of design 61
Appendix 3 – Code 61
Appendix 4 – Team Contract 61

List of figures/tables/symbols/definitions

FIGURES AND TABLES
Figure 3.2.1: Component Breakdown

Figure 3.4.1: First Semester Schedule

Figure 3.4.2: Second Semester Schedule

Figure 4.3.1: Simple Component Breakdown

Figure 4.3.2: Component Breakdown

Figure 4.3.3: Query GUI Mockup

Figure 6.1: Implementation 1 State Diagram

Figure 6.2: Implementation 1 Task Decomposition

7

Figure 6.3: 3D Meteo Temperature Graph

Figure 6.4: Temperature Graph for 3 Different APIs

Table 1: Personnel Hours Breakdown

Table 2: Personnel Hours Actual Breakdown

Table 3: Areas of Ethical Concern

Table 4: Analysis of Implementation

Table 5: Areas of Professional Responsibility

Table 6: Broader Context and Four Principles

IMPORTANT DEFINITIONS AND TERMS
ARA: Acronym for Agriculture and Rural Communities is an at-scale platform for
advanced wireless research across Iowa State University and the city of Ames spanning a
rural diameter over 60km.

Disdrometer: Optical device situated on ground station platforms that measure
precipitation.

GUI and UI: Graphical user interface and user interface which are both used
interchangeably through the document. These are visual ways for users to interact with
digital backend devices.

API: Acronym for application programming interface which in our project is used for
external weather sources. This is a software intermediary that allows applications to
communicate with each other.

ZIP File Structure: ARA dataset guidelines for organizing the data generated from
weather and wireless signal experiments. Allow for a standard naming convention for
experimental dataset across ARA.

1 Introduction

1.1 PROBLEM STATEMENT

Our clients are researchers for ARA (Agriculture and Rural Communities), an
advanced wireless research platform in Ames, Iowa and the surrounding area. Part of
their research involves collecting weather data from disdrometers set up at points
throughout the region. These disdrometers can record data from all types of weather to be

8

used for research. However, recording all data at all times is inefficient, taking up more
space than needed, gathering data when weather conditions are normal. But how can the
disdrometers know when a weather event is occurring to begin recording data?

This problem is what our group aims to solve. Our project is tasked with creating
a system that will recognize and predict when a weather event is occurring. This trigger
signals data collection before a given weather event has begun and allows us to continue
collecting data until the weather event has passed. The collected weather data will
eventually allow researchers to determine how the performance from the ARA
framework differs during different weather events. The weather data will be able to be
queried once gathered, allowing for easy visualization and analysis.

As our group works through this problem, we want to intelligently collect data on
a wide range of network data during a variety of weather events. We also want to use
forecast data to predict future weather events to gather data only when weather events we
want to record are going to occur. Lastly, we need to store collected data and allow for
user queries to access and format selected data.

Allowing for this data to be gathered and analyzed will allow for better research
into ARA’s primary mission; creating a wireless lab for the research and development of
wireless technology that is both affordable and connective for rural communities and
industries such as agriculture. Both internal researchers at ARA and external researchers
from around the world will be able to utilize the data our project collects to further their
studies and create new devices.

In order to predict the weather events, our project looks to weather forecasting
APIs (Application Programming Interfaces). These will give our project data on weather
events that are forecasted in the near future. But this can create an issue for us as we need
access to other programs not owned by ARA. This is an important issue because without
these forecast APIs, our predictions won’t be as accurate. We want to have access to
multiple forecast APIs so that we can rely on many predictions rather than just one. In
order to address this issue we are requesting access to APIs we find that suit our data
needs through keys.

The data from these external APIs can also prove problematic even once we have
access to them. Just because they have the data we need doesn’t mean that all of it is
useful or formatted in a usable way. This is another important issue as we need to be able
to read the data to inform our disdrometers the predicted time to begin recording the live
weather data. To fix this, we are working to clean the data from the APIs as it is received,
only keeping the important parts for prediction, and formatting it to a uniform standard.
(Appendix 1)

1.2 INTENDED USERS

1. Internal Users for ARA typically from Iowa State (All have same needs)

9

 Examples: Professors, Graduate students, Undergraduate students

2. External Users of ARA platform (All have same needs)

Examples: Outside Universities, Industry Professional, Individual Users

From speaking with our client we determined that there are only two users for our
product. Our client described to us that users using our product will either be internal
users or external users. They described that the only difference between the external and
internal users would be that internal users would be from Iowa State institutions,
however, these users will not have different needs from the external client. Our client
described that the internal users will only have admin access to the product. The external
users will be outside of Iowa State but this can include other universities, industry and
even individual users. Through this process we determined that our product only has two
categories of users: internal and external.

The product that we create will be used by internal ARA users which will include
groups of people from Iowa State such as professors, graduate students, and
undergraduate students. The product will also be used by external users who will have the
same needs as the internal users. Some of the external users include outside university
faculty, industry professionals, and individual users.

The people who will benefit from our product are the internal and external users
since they will be able to learn when weather events are occurring and how those weather
events affect the experiments they are running of the ARA framework. The internal users
are local to Iowa State and some of their characteristics is they want to query for certain
weather data that occurred on a specific day. They will want to do this in order to see how
their experiments running on the ARA framework might have been affected by weather
events. The external users will want to query for certain weather data that occurred on a
specific day. They will want to do this in order to see how their experiments running on
the ARA framework might have been affected by weather events. These characteristics
are the same for both internal and external users.

The user needs for the internal users are the ARA researcher needs weather data
to be collected when a weather event occurs because they want to collect, store, and
publish this information.(Appendix 3) Another need is the researcher needs weather data
because they want to analyze how the ARA equipment was affected by weather events.
For external users their needs are similar; The researchers need a way to know when
weather events occurred because they will analyze how the weather affected their test
results on the ARA framework. (Appendix 2) Another need is the researchers want an
easy way to query specific weather events data because they want to access weather event
data efficiently.

The characteristics of each of our user groups are described in the empathy maps
in the appendix below. However, a brief description and characteristics of our internal

10

and external users are as follows. The internal users are any users that are internal to Iowa
State University. These can include undergraduate and graduate students, professors,
postdoc researchers as well. These researchers have various goals, some can include
trying to advance 5G or massive MIMO technology. For example, our persona David is a
25 year old PhD student who is working on experimenting with ARA containers to
provide high-speed connectivity in rural areas. Our external user persona, Bob, is a
long-time researcher at Bell Laboratories. He recently started working on exploring 5G
connectivity and he hopes to find large datasets online that will help his investigation on
how weather events can affect connectivity.

 The users will benefit from our product because they will have an easy and
intuitive way to query weather data so they can easily identify when a weather event
occurred so they know if their experiments were affected by weather events. Our problem
statement includes storing and collecting data for users to query and access in a formatted
way. The proposed benefits we have directly connect to our problem statement as users
will have an easy and intuitive way to query data.

2 Requirements, Constraints, And Standards

2.1 REQUIREMENTS AND CONSTRAINTS
Functional

- Must trigger data collection when rain is detected within desired lead-in data
collection time.

- If average predicted precipitation probability is 80% or greater, begin gathering
lead in data 30 minutes ahead of the predicted time.

- If average predicted precipitation probability is 25% or greater, begin gathering
lead in data 30 * (Average Predicted Precipitation Probability / 100) minutes
ahead of the predicted time.

- The software shall have a specified lead-in time where data is being collected a
specified amount of time before the weather event.

- The software shall have a specified lead-out time where data is being collected a
specified amount of time after the weather event.

- The software shall use three weather forecasting APIs to predict when a weather
event will occur.

- The software shall incorporate a UI that allows users to query weather events on
specific days.

- Must utilize local weather data for validation.
- While the software detects there is a weather event it shall keep collecting data

until the weather event or the lead-out time is complete.

11

- When the software first starts it shall query the ARA weather API and the weather
forecasting APIs.

- When the software detects a weather event it shall begin lead-in data collection
before a specified amount of time before the weather event.

- When data collection for a weather event is complete the software shall send data
to be processed.

- If there is no weather event then the software shall wait for the next weather event
prediction.

- If there is a weather event but not within the specified time to start lead-in time
data collection then the software shall wait to begin collection until the specified
lead-in time.

- The software shall store weather collection data in a ZIP file hierarchy.

Resource
- Uses the ARA framework to collect, store, and provide access to weather data.
- Shall have access to external weather forecasting APIs
- Weather data shall be stored in the storage space provided by the ARA framework
- Shall run on the server space provided by the ARA framework

Physical

- Must use ARA’s Disdrometer when collecting live weather data from the ARA
framework

Aesthetic

- The software shall utilize data visualization tools such as graphs and histograms
- The software shall graph the predicted weather at specified intervals and plot the

difference between the predicted and actual weather.
- The graph shall utilize multiple colors to see the difference between actual and

predicted weather.

User Experiential
- GUI shall be accessible from the ARA systems
- Shall be easy to use for someone who has experience running scripts using the

command line.
- The GUI shall be intuitive to query data for users.
- The GUI shall be easy to navigate for new users on the first attempt of using it.

UI

- The UI shall execute queries in a timely manner such as depending on the size of
the dataset under 2 seconds.

12

- The UI shall allow users to write queries or select pre-determined queries.

2.2 ENGINEERING STANDARDS

Engineering standards are important since they often provide a guideline for
different processes and components of a project. These guidelines are commonly used in
a variety of projects which makes every project that follows these standards easier to
understand. It also makes the process of creating a project easier since anyone making a
project can find various standards that have been set by other projects and apply them to
their own.
 The first engineering standard that we had picked was standard 1413 IEEE
Standard Framework for Reliability Prediction of Hardware. This standard goes over a
framework for a reliability prediction of hardware. It specifies any required elements
needed to form a reliability prediction as well as information needed to determine if
collected data meets requirements. Each reliability prediction needs to have a specified
list of inputs, assumptions, data sources, methodologies, and uncertainties. All of these
are used when calculating risks when we decide to use the results gathered from our
hardware. This standard does not provide any way to evaluate various methodologies the
group might pick when deciding which one is best for our reliability prediction. The
standard also does not provide any instructions on how to perform the reliability
prediction. The standard's goal is to allow an ease of defining and creating reliability
predictions for hardware so that development teams and users of the application can be
assured that the data gathered by hardware components meets the acceptable ranges set in
the requirements.
 The second engineering standard that we had picked was standard 1063 IEEE
Standard for Software User Documentation. This standard details the minimum
requirements for each format, structure, and content for various pieces of user
documentation. It states that each of these minimum requirements are important for user
documentation since many software applications can be made far more difficult to use if
the documentation surrounding them are unclear, disorganized, and difficult to read. The
standard breaks down each of the minimum requirements into their own sections while
stating that the order of each section does not imply a correct step by step process to
follow. For the format of each document should remain consistent throughout not only
one document but all associated with the project. Each document should also have a file
format that is available for most modern computers and have the ability to be modified
for users with special accommodations. For the structure, each document should be
broken down and divided into topics. Each section should only contain relevant
information regarding the main topic with some reference to other topics covered by the
document. Lastly the standard covers how the content in the user documents should be
laid out in a way that facilitates an easy understanding of topics covered in user

13

documents. It goes into more detail about how the content should be as accurate as
possible without being too full of technical definitions that would make the content more
difficult to understand. This standard’s goal is to provide a baseline for how any
documents created for a project should be made. This baseline can be used to evaluate
different documents created for this project.
 The third engineering standard that we had chosen was standard 1012 IEEE
Standard for Software Verification and Validation. This standard goes over the software
validation and verification process. These processes help determine whether a piece of
software satisfies requirements and user needs. The standard lists four different levels
called software integrity levels that help quantify if the software meets requirements.
These levels are in decoding order, high, major, moderate, and low. These processes may
have different steps such as analysis, evaluation, testing, review, and assessment. The
standard also states that any evaluations or assessments of software must be done within
the context of the system which includes any hardware, users, environment, and interface
software associated with the tested software. The goal of this standard is to provide a
common framework for validation and verification of pieces of software. It also wants to
define what the validation and verification process is and the various parts that go into the
validation and verification process.
 The first standard we had picked is relevant to our project. Since our project uses
many different hardware components to measure and record data points we need to
ensure that each one of these components is measuring and recording data points
correctly. The standard goes over a process on each item that is picked for the reliability
prediction. The first part of this process is to define any elements needed for the
reliability prediction. This includes a description of the item, intended prediction results,
methodologies used for the prediction, inputs for the prediction, metrics used, and any
uncertainties that might be in the prediction. Each one of these steps can be done on the
hardware components we are going to use. These pieces of hardware are WS100 Radar
Precipitation Sensor/Smart Disdrometer which is located at ARA’s Agronomy Hall site.
The other site has a different distometer, OTT Parsivel² Disdrometer that is located at
Wilson Hall. Each of these sites also has a weather station that provides other measuring
tools.
 The second standard covers user documentation standards. ARA already has
various user manuals and documents that would need to be updated with our new
features. We would need to be confident that our changes to ARA’s user documents
match with previously set formatting and structural design decisions. Currently our plan
is to create an API that can predict weather events so we can begin collecting data points
during those weather events. The details of this API will need to be included in ARA’s
user manual under the ARA API section. In this section instructions on how to use the
API will be included as well as details such as the formatting of data, parameters, and
outputs for the API. All of this will be structured similarly to that of ARA’s current API

14

documents. Based on the many changes that will need to be made to the ARA user
documentation this standard is very relevant to our project since it details how user
documentation should be structured, formatted, and how the content is presented in each
document.
 The third standard details the process for validation and verification. Our project
has many requirements that are specified above in the requirements section and our API
needs to satisfy them. In order to determine if our developed pieces of software meet
specific requirements we need some process that can be used as an evaluation tool. This
standard provides us with such a process. It helps us figure out how and where to test our
API’s components and to what degree do those components meet requirements. Due to all
of the helpful planning and evaluation information in the standard it is important for our
project.
 The standards picked out will only make small changes to our project. They are
mostly providing some structure and guidance on how we should go about certain parts
of our project. Each of the standards is adding something new that we need to the project
but they are not necessarily changing our current approaches to developing the API. The
first standard will require us to add some kind of hardware testing to the project to ensure
that the hardware components are gathering data points correctly. The second standard
will give us a guideline on how we should go about updating the user documentation on
the ARA user manual. The third will be adding a verification and validation process to
the end of our development cycles for each piece of software to make sure that the
software satisfies the requirements for the project.

3 Project Plan
3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
 For this project we decided to adopt an agile project management style. The
reason our team picked this project management style is that it followed our structure for
weekly meetings. Every week (when possible) we met with our client and advisor to
discuss what we had accomplished and what our plans were for the coming week. Due to
this meeting structure it made sense to use an iterative development style like agile. Our
team's progress was tracked using Github where we list out tasks that need to be
completed by the end of the next week. Our team also used Discord for communication
and a shared Google Drive for our documentation.

3.2 TASK DECOMPOSITION
 First Semester
 The tasks for the first semester focus more so on the planning of the project which
is reflected in the tasks that were completed.

- Project Charter

15

- Conceptual Design
- Initial Research
- ARA Experiments
- Formulating Users
- Creating Requirements
- Finalize Requirements and Users
- Task Decomposition
- Detailed Design
- Weather Forecast API Prototype
- Analyze Weather API Data
- Forecast Data Visualization
- Weather Prediction Prototype

 Second Semester
 For the second semester we took our component design and divided the individual
actions into tasks that could be worked on congruently. From this we developed a Task
Decomposition Diagram to visualize the individual tasks that we needed to complete.
From our diagram (shown below) we determined there were three major tasks that
needed to be completed; API Prediction Metrics, ARA Live Data Collection, and Data
Formatting. The latter already serves as a fairly disconnected component to the overall
system, making it a clear candidate for a task. The other two were determined by
analyzing the Prediction and Data Gathering component of our design and recognizing
the unique logic that separates Prediction (outlined in Red) and Data Gathering (outlined
in Purple). As a team we decided to dedicate these tasks to specific teams composed of
two members to ensure project development occurs concurrently. Additionally, a final
task was determined that falls outside the scope of the previous three tasks. This final
task’s focus is on documentation, testing, and GUI development. Due to the breadth of its
scope this task was treated as a team task that was handled after the implementation of
the individual components.

16

Figure 3.2.1: Task Decomposition Diagram

API Prediction Metrics:

- This task involved utilizing the three APIs we selected (OpenMeteo, Tomorrow
Weather, and Weather.gov) to predict the precipitation probability and when
certain weather events will occur. This functionality could be broken down into
three minor subtasks; Gather Prediction Data, Calculate Predicted Weather Event,
and Send Trigger to Collection component.
 Gathering the Prediction Data required the development of a python script
that would query each API once an hour for the predicted precipitation within the
next hour. Each request is unique to the individual APIs. Once the percentage of
precipitation is collected, the script should calculate the overall odds of
precipitation based on the collective information pulled from the APIs. From this,
lead-in time is calculated to ensure that higher chances of rain have longer lead-in
times. Finally, the system should send this information to our Data Collection
component.

ARA Live Data Collection:

17

- The focus of this task is to utilize data collection devices (such as disdrometer and
COTS) to collect live data as a weather event occurs. Much of the time spent on
this task was working out how the communication channels between our script
and the data collection devices should be organized. Additionally, the script was
specifically designed to begin collecting lead-in data based on the API prediction
while also starting collection independently if a local weather event was detected
live. From this we determined four minor subtasks needed to complete this work;
Collect Live ARA Data, Trigger if local event detected, Lead-in recording based
on Prediction trigger, Validate Predictions.

 The Live Data Collection section of our script would be triggered either
from the API predictions or by detecting independently that a weather event (that
hadn’t been predicted) was actively occurring. This functionality was developed
hand-in-hand with the actual collection of the live data pulled from the
disdrometer and COTS. Lead-in time based on the trigger from the API
predictions was then added to the script. Finally, with all of this developed effort
was placed in ensuring that the API predictions were accurate in predicting future
weather events.

Data Formatting:
- Data Formatting exists as more of a standalone task than the other two. While API

Predictions and Live Data Collection are fairly intertwined in their functionality,
Data Formatting runs almost independently of the two. The main task is to format
and store the collected live data in a .Zip hierarchy while updating a local
database with the file names and paths. This task was subdivided into three minor
subtasks; Access the ARA data from the interval collections, Format Wireless and
Weather data in .Zip hierarchy, and Update database with new data information.
 The first subtask required the team to access the data created by the Live
Data Collection script. This task innately requires intense communication and a
focus of vision to ensure that data is presented in an agreed upon format. Once the
data is accessed, it is formatted into two CSVs (one for disdrometer data and one
for COTS) before being compressed into a .Zip file along with a readme. The next
task was to update the server’s MariaDB with the proper information including
the relative path of the .Zip, location of the data collected (such as Wilson Hall),
and the start date.

Concluding Subtasks:
- Our concluding subtasks include all additional tasks that don’t fit within the scope

of the previously listed tasks. These include documentation of our process,
testing, validation, and GUI development.
 Documentation is a formality, one that the functionality of the project
itself does not depend on. The testing and validation tasks feel as though they are
complementary to one another, and were done concurrently at the end of the

18

semester. Our GUI development relied heavily on the implementation of the Data
Formatting task, taking the .Zip files and visualizing the data using a local
instance of Grafana. The GUI subtask saw us creating a web application to
visualize the selection of a given dataset before graphically displaying it on the
ARA server’s local instance of Grafana.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
Predict Weather Data

- Milestone: Script that uses multiple APIs to predict precipitation probability and
then find the average over the probabilities and send a trigger to begin ARA data
collection based on the precipitation probability values.

- Metric 1: The system should collect API Forecast Data from each API
consistently.

- Metric 2: The system should consistently send a trigger to data collection whose
value is dependent on the average forecast precipitation prediction.

Data Collection

- Milestone: Script to inform ARA network to begin live data collecting when an
event is detected from predict weather data script.

- Metric 1: The system should be able to collect data from the ARA network, both

weather collection devices and wireless collection devices, at a specific time.
- Metric 2: The system should be able to identify when the API prediction script

misses a weather event and begin to predict on its own if needed.
- Metric 3: The system should be able to determine the end of an occurring weather

event in order to stop collecting data for the event.
- Metric 4: Upon completion of a weather event, the system should be able to send

the collected data to the data formatting script

Data Formatting

- Milestone: Format and store collected live data utilizing a ZIP hierarchy.

- Metric 1: The system should take collected weather and wireless data from
intervals of collecting time and format them for storage

- Metric 2: The system should utilize a ZIP hierarchy

User Interface

19

- Milestone: User Interface which allows a user to be able to access and display
gathered data.

- Metric 1: The UI should be usable to new users after reading a user manual/
guide.

- Metric 2: The UI displays the gathered data to the user.
- Metric 3: The accuracy of the UI is 100% for the data that should be displayed.

Data Processing

- Milestone: Initial Prototype to feed in some sample test datasets.

- Metric: The program formats the sample datasets correctly.

ARA Platform Querying

- Milestone: Initial Prototype to query sample datasets.

- Metric 1: We are able to query the data from the backend correctly.
- Metric 2: Any user is able to query the data using our GUI.

Program Overhead

- Milestone: Full Prototype with Collection Loop and Data Parsing.

- Metric: The program runs continuously with no issue.

Final Deliverable

- Milestone: Integrating all parts of the code to predict, gather and store data.

- Metric 1: The accuracy of the model to identify actual weather events. The
accuracy of such should identify all actual weather events.

- Metric 2: The accuracy of the model to collect and timestamp all relative data.
The model shall accurately collect and store data 100% of the time.

- Metric 3: The program runs continuously with no issue.
- Metric 4: The program formats data 100% correctly.
- Metric 5: A user is able to query the data using our GUI.
- Metric 6: The final product is completely ready (meets all metrics) by the demo.

3.4 PROJECT TIMELINE/SCHEDULE
First Semester

20

Figure 3.4.1: First Semester Schedule

Second Semester

Figure 3.4.2: Second Semester Schedule

3.5 RISKS AND RISK MANAGEMENT/MITIGATION
Consolidate Weather Data
When it comes to consolidating weather data, there are 3 main risks that we have
considered:

The first risk we considered was if the external API would go down for extended
time. We estimate that there is a probability of 0.10, but the severity of risk is high. We
are mitigating this risk by utilizing multiple APIs. We mitigate the severity of this risk as
a single API becoming unavailable will not break the system.

The second risk we considered was if an external API call fails on rare occasions.
We estimate that there is a probability of 0.05 and the severity of risk is moderate. We are
mitigating this risk by utilizing multiple APIs. We use separate calls in try-catch blocks to
ensure that there are no problems even if an API call fails on rare occasions.

The third risk we considered was if an external API changes data output format.
We estimate that there is a probability of 0.2, but the severity risk is low. We are
mitigating this risk by monitoring the API websites that we are using and staying

21

up-to-date on any updates from those sites regarding their data formatting and any
changes they make.

Consume and Record Active Weather Data
When it comes to consuming and recording active weather data, there are 2 main risks
that we considered:
 The first risk we considered was if we were unable to collect data from an ARA
Weather Station. We estimate that it has a probability of 0.1 and the severity of risk is
moderate. Because this project is intended to be on the ARA Framework, any issues with
the weather stations not outputting data would be an issue across most of the ARA
Framework. This issue would be mediated by the ARA admins and requires no mitigation
plan from our team.
 The second risk we considered was if ARA changes their data formatting. We
estimate that this risk has a probability of 0.2 and the severity of risk is low. Since we are
directly working with the researchers who control the ARA equipment, our plan is to
make them aware of how we are using the data currently and inform them how a change
in formatting can affect our model.

Program Overhead

When it comes to our program overhead, we considered one main risk.
Specifically, if the ARA server goes down. We estimate that this risk has a probability of
0.1 and a high severity. In terms of our code, there will always be a copy of the code we
are running on our GitHub. In terms of the program itself going down and not being able
to predict weather events, we will have to temporarily pause weather event data
collection in order to get the server up and running again. Another solution could be to
request an additional server and have scripts running in parallel on both the servers.

Data Processing
When it comes to data processing, we considered one main risk. Specifically, if the data
corrupts or the data produced is false. We estimate a probability of 0.3 and the severity is
moderate. We have a check in the data processing script that will check that the data has
not been corrupted and is in the correct expected format.

ARA Platform Querying
When it comes to ARA platform querying, we considered two main risks:
 The first risk we considered was if the GUI fails to visualize the data. We estimate
that it has a probability of 0.3 and a moderate severity. The team will need to get user
validation on if the data was correctly visualized in graphical form. If the data was not
correctly visualized then there will be a button for the user to regenerate the graphical
visualizations.

22

 The second risk we considered was if the GUI fails to pull correct data. We
estimate that the probability of this is 0.1 and a low severity. The team plans to
implement multiple tests in order to prevent this failure from occurring. However, if the
GUI did fail to pull correct data then the user can have the option to report this issue to
the developers which is the team.

Data Collection, Storage and Hardware
When it comes to Data Collection and Storage, we considered three main risks:
 The first risk we considered was taking up too much storage space. We estimate
that it has a probability of 0.9 with a low severity. This will almost always be a concern,
we can mitigate this by decreasing the lead-in time and preventing the system from
gathering unnecessary data, generally by having accurate predictions.
 The second risk we considered was collecting inaccurate data. We estimate that it
has a probability of 0.2 with a moderate severity. The team mitigates this by using local
devices to measure weather data and incorporating methods for false positives and
negatives.

The third risk we considered was creating hardware malfunctions. We estimate
that it has a probability of 0.01 with a high severity. The team mitigates this by ensuring
our program has been thoroughly tested before merging it with the ARA servers and
currently existing applications on their hardware.

-
3.6 PERSONNEL EFFORT REQUIREMENTS

Tasks Description Hours

1st Semester

Project Charter Begin learning about our
project and exploring ideas.

2

Conceptual Design Start brainstorming initial
ideas based on client
description.

6

Initial Research Research ideas on how to
begin implementing initial
parts of our project.

4

ARA Experiments Start experimenting with
the ARA framework and
get familiar with the

4

23

reserving resources.

Formulating Users Work with client to identify
potential future users of our
project.

2

Creating Requirements Based on the users of the
project identify
requirements needed for
the project.

4

Finalize Requirements and
Users

Confirm with the client the
requirements needed to
meet the user’s needs.

2

Task Decomposition Breakdown the different
tasks needed to complete
the project and how all the
components fit together.

6

Detailed Design Create component design
of predicting and gathering
weather data and breaking
down the chart based on
different phases.

10

Weather Forecast API
Prototype

Begin creating a prototype
that uses external APIs to
predict and gather weather
event data.

12

Forecast Data Visualization Use the weather forecast
data output and create
graphs to visualize the
difference in predicted
weather forecast at a
certain time out.

6

Weather Prediction
Prototype

Create a prototype that will
use external APIs to predict
when a weather event will

20

24

occur.

2nd Semester

Gather Prediction Data
from APIs

Call APIs to gather data to
determine when a weather
event will next occur

2

Determine Weather Event
from APIs

Decide based on the
prediction data whether or
not there is a weather
event. Determine a time to
start collecting if there is
one.

6

Send Calculated Trigger to
Collection System

When the designated time
arrives, send a trigger to
start collecting data.

9

Collect and Format Live
ARA Data

Collect data and send it to
the formatting module
when it is done.

5

Trigger if Local Weather
Event Detected

This is a backup system. If
we fail to determine a
weather event based on
prediction data, but a
weather event is happening
we can start data collection
immediately.

2

Implement Record
Functionality Based on
Trigger

This is the system for
collecting data.

5

Validate Prediction
Algorithm

Making sure that the
prediction algorithm
triggers collection at the
correct time.

8

Access ARA Data from Take the collected data and 4

25

Interval Collections be able to manipulate the
files.

Format Weather and
Wireless Data in Zip
Hierarchy

Take the files and rename
them to match ARA
standards. Then place them
in folders whose names
also match ARA standards.
Lastly, zip it and place it in
a designated folder on the
ARA server.

8

Update Database with New
Zip Paths

Use MariaDB to store the
file paths for the created
zip files.

6

Integration Combine prediction and
collection scripts and
eventually the formatting
scripts.

8

Integration Bug Fixing Takes place over time to
find any remaining bugs.

20

UI/GUI Create the GUI that users
will use to query the data
on the ARA platform.

6

Documentation This. Literally this. Like
what I am doing right now.

15

Testing Making sure all
outstanding bugs are
squashed.

20

Validation Verifying that the final
product meets all
requirements and client
expectations.

17

Table 1: Personnel Hours Breakdown

26

Tasks Hours Significant Mismatch?

1st Semester

Project Charter 2 No

Conceptual Design 6 No

Initial Research 4 No

ARA Experiments 4 No

Formulating Users 2 No

Creating Requirements 4 No

Finalize Requirements and
Users

2 No

Task Decomposition 6 No

Detailed Design 10 No

Weather Forecast API
Prototype

12 No

Forecast Data Visualization 6 No

Weather Prediction
Prototype

20 No

2nd Semester

Gather Prediction Data
from APIs

4 No

Determine Weather Event
from APIs

9 No

Send Calculated Trigger to
Collection System

12 No

Collect and Format Live
ARA Data

9 No

27

Trigger if Local Weather
Event Detected

6 No

Implement Record
Functionality Based on
Trigger

9 No

Validate Prediction
Algorithm

6 No

Access ARA Data from
Interval Collections

6 No

Format Weather and
Wireless Data in Zip
Hierarchy

12 No

Update Database with New
Zip Paths

12 Yes, we ended up having a
lot of issues related to
creating and filling the
database.

Integration 8 No

Integration Bug Fixing 6 Yes, the transition ended up
being smoother than we
expected.

UI/GUI 15 Yes, Grafana ended up
being tedious to work with.

Documentation 16 No

Testing 21 No

Validation 21 No

Table 2: Personnel Hours Actual Breakdown

28

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context
 The broader context of our design problem involves the main focus of ARA’s
goals. ARA focuses on research for communicating in rural communities. Our project is
specifically involved with research into wireless signal strength. Our designs will help the
ARA researchers better understand what weather conditions could worsen the wireless
communication to rural areas. Not only does this affect the ARA researchers or external
researchers who use our project, but it could also affect people living in rural areas as
researchers use this data to improve communication for their communities. Through this
work, our project addresses the societal need for better, faster communication, even in
areas of the United States where technology is less prevalent.

Relevant considerations in areas of importance, related to our project:

Area Description

Public Health, safety,
and welfare

The project research will lead to a better understanding of
how weather affects wireless data. In turn, ARA can
discover ways to help keep internet uptime at a maximum.

Global, cultural, and
social

Our project reflects the ideals, values, goals, and practices
of the ARA community and workspace. Our project helps
further their research and achieve their goals. Our project
also affects rural communities through ARA. Our project
looks to reflect their needs by assisting in the creation of
better wireless communication for those communities.

Environmental The software we are developing should have essentially
zero impact on the environment.

Economic The only costs would be for ARA to maintain and manage
the data storage after we have completed the project.
Otherwise, it is of no cost to us or other stakeholders.

Table 3: Areas of Ethical Concern

29

4.1.2 Prior Work/Solutions
According to our thorough product research, there is weather forecasting software

out there. In fact, in the previous iteration of our design, we are using several APIs to
predict when weather events would be happening. Specifically, we are using Tomorrow.io
API [1], Open-Meteo API [2], and National Weather Service API [3] for this purpose. We
are using a feedback loop [4] of data to help determine weather events.

4.1.3 Technical Complexity
Our project is of sufficient technical complexity since the design consists of

multiple components and subsystems that each utilize distinct scientific and engineering
principles. Our design requires the use of external APIs to predict weather events and the
use of weather stations to collect data. The design process has been quite challenging and
requires scientific accuracy to determine what is considered inclement weather and not
simply a muggy day. We also need to be accurate in our software to make sure that it is
precise and not buggy.

Our project also matches and exceeds the technical complexity of other projects in
the market. Our design features the use of weather stations to determine when inclement
weather occurs and collects wireless signal data during those weather events. In our
thorough product research, there has not been anything that matches our project in terms
of what we are trying to do. Overall, our design meets the technical complexity
requirements.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions
Key Design Decisions:

1. We will use multiple forecasting API’s to predict future weather conditions in
Ames, Iowa. This is important to the success of our project because by using these
data points, we can determined when to start collecting data in advance in order to
collect data during any performance changes

2. We will only be predicting when the next weather event occurs at any point in
time. This is important because it determines how far ahead with the forecast data
we need to look. Additionally, it simplifies the logic for when to start and stop
data collection

3. We will use ARA operated weather devices to measure current weather
conditions. This is important to the success of our project as it will be how we

30

validate our forecasting algorithm to determine when we should collect wireless
data.

4.2.2 Ideation
 When it comes to the first design decision we made it made sense to have
multiple forecast API’s. This was done due to the variety of the data samples that each
API provided. We also found that many of the API’s used recorded some data points with
better accuracy compared to other APIs. The end goal is to use all of the APIs to have a
more accurate prediction model for when we want to start the collection process of
performance data for wireless data. Here are 5 API’s that we had looked at,

- Open-Meteo
- Tomorrow Weather API
- National Weather Service
- WeatherBit
- AccuWeather

 Currently we are using 3 API’s in our final project, Open-Meteo, Tomorrow
Weather API, and National Weather Service. How we determined these 3 is that we had
prioritized free API’s and ones that we can get data frequently. Accuracy was also a large
part of determining which API’s that we wanted in our project. Below is a list of pros and
cons for each one of these API’s.

4.2.3 Decision-Making and Trade-Off
We discussed as a group what the best decisions would benefit us the most

throughout our project. We were primarily concerned about gathering accurate forecast
data from forecast APIs, so we can predict weather events. We looked at many different
APIs and weighed the options about what benefits and drawbacks they would each have.
There were 5 primary APIs that we considered. Through our analysis and testing, we
narrowed the list down to 3 APIs (Open-Meteo, National Weather Service, and
Tomorrow). After making a decision as a group, we presented our findings with our client
and advisor, and they approved our decisions.

API Pros Cons

Open-Meteo ● No API key
● 10000 requests per day
● Pulling weather data from NOAA
● Hourly weather data for a 7 day forecast
● Weather models are updated every hour

● When tried the API
for Ames it didn’t
seem to be that
accurate but could
also be user error

31

● Incorporate real time measurements from
airplane data, buoys, rain radar and
satellite observations

● Historical weather data from the past 80
years

● Provide predictions for Temperature,
Clouds, Rain, Solar radiation, Winds at
higher altitudes, Transpiration, and Air
quality

● Geocoding API → find coordinates of
locations

● Seems relatively easy to use and integrate
● API can respond with a chart of whatever

data points user wants plotted

● Not as intuitive as the
other APIs

● Outputs a lot of
information that will
need to be parsed into
more readable format
to make decisions
from

Tomorrow
Weather API

● Free version
● Provides hyper localized weather data

○ Can deliver weather data that’s
very localized, down to specific
city blocks

● Provides real time updates
● Advanced weather layers

○ Can choose between different
parameters to include in your
forecast such as precipitation,
temperature, humidity, wind
speed, cloud cover

● Integrates multiple weather models
○ Uses weather prediction models

from NOAA
● Can get access to historical weather data

○ Can analyze the trends and tailor
our application to specific weather
events

● Well documented on how to integrate the
API with projects

● Has 60 different weather fields to choose
from

● Output of the API is a
lot of information

○ Looks like it
needs some
work to be
parsed and
formatted
correctly

● Allows for 25
requests an hour

○ Returns too
many calls
error until
next hour

● Requires an API key
○ Need to

generate a
new key
every hour

32

● Easy to personalize the location to take
weather from

National
Weather
Service

● Completely free and open source
○ Everything found on github

● Retrieve data for a location using latitude
and longitude

● Data available
○ Temperature, Dewpoint,

maxTemp, minTemp, Relative
humidity, Feel like temperature,
Heat index, Wind chill, Sky cover,
Wind direction, Wind speed, Wind
gust, Weather conditions array,
Hazards, Probability of
precipitation, and Quantitative
precipitation

● Has even more weather data layers such
as snowfall amount and ice accumulation

● grid points endpoint fives access to raw
numerical data

○ Formatted in JSON document
○ Each data point has valid time

which is the interval that the value
applies to

○ 2019-07-04T18:00:00+00:00/PT3
H

■ Interval starting on 7/4/19
at 1800 and going for 3
hours

○ Value which is the actual value
that applies in the valid Time
interval

○ Include last-modified header
● Caching the result of the points requests

to avoid having to do same request
multiple time

● The JSON format
seems to be a little
nicer to read and
parse

● Need to do 2 API
requests to get the
weather data

○ 1 for location
○ Another for

the actual data
user wants

● User’s have said the
cache part is a little
complicated

● The model grid point
also seems a little
complicated, need to
first get the grid point
then will create the
table of weather data

● Not super reliable,
goes down often

○ Was down at
the beginning
of this year in
January

● Integration is not as
smooth

33

WeatherBit ● Has multiple API endpoints
○ Current weather
○ Severe weather
○ Forecasts
○ Historical weather
○ Ag-weather
○ Air quality

● Has many methods to look up weather
○ latitude/longitude
○ City name
○ Weather station ID
○ Zip code
○ City id

● Seems to have good documentation for
integration

● Uses swagger UI
● Precipitation forecast returns 1 minutes

interval forecast for precipitation rate and
snowfall rate

● Doesn’t provide an
individual endpoint
for wind speed

○ Combines it
with cooling
and heating
degree day
information

● Requires an API
● Need a subscription
● Only 50 requests per

day with free version
● Lighting data, climate

normals, air quality,
degree days not
included in free
version

● Can only have 1 API
key with free version

● Standard plan is $40
a month

● Accuracy depends on
location

● Semmes to be pulling
weather from nearest
weather station

AccuWeather ● There is a key for specifically getting
forecast data every hour

● Has great documentation with a lot of
information about what the requests will
give and how we can access the
information

● Needs an account.
Free accounts can
only have one API
key

● Free accounts only
get 50 calls a day,
which could be a
problem eventually

● Keys get the weather
forecast for a specific
area. If we want to
get the forecast data

34

for somewhere
outside of Ames
down the line, we
would need
additional API keys
for those areas
requiring a paid
account or multiple
accounts.

Table 4: Analysis of Implementation

After discussing our options with our client and advisor, they were interested in us
pursuing using APIs to predict upcoming events or gathering all data for periods at a time
and deleting the unneeded data. We first did research into possible APIs we could use that
would gather the forecast data we would need and would be free for us to use. The APIs
we decided to pursue were Mateo, Weather.gov, and Tomorrow API. We create a basic
implementation (described further in section 6) that would gather the forecast predictions
from those APIs. We then compared those predictions to actual historical data for those
predicted times. Overall, we found that these forecast predictions could never meet the
desired accuracy. Additionally, the APIs couldn’t gather specific enough forecast data for
the locations where the weather would be recorded, instead encompassing a larger area.
This led us to decide to go with the other option, gathering all data for set periods of time
and deleting the unneeded data.

4.3 FINAL DESIGN

4.3.1 Overview
 Our final design focuses on using APIs to gather forecast data, and use this data to
inform when to begin gathering live weather data during weather events. The state
diagram below gives a clear visualization of the phase our design will go through as it
gathers, predicts, and collects data. It also takes into account certain outlier cases such as
back to back weather events.

35

Figure 4.3.1: State Diagram

The state diagram shows the different states of our system relative to our scheduling
system. The four main states of our software are:

1. Standby: The passive state of the software.
2. Prediction: Where the software uses forecast API to look for future weather

events.
3. Collection: The state the software is in when it gets the live weather data from the

ARA Framework for the lead-in time before and during a weather event.
4. Post Event Collection: Where the software gathers data for the lead-out time,

configures the collected data from a weather event and stores it in a designated
location.

There are also three different variables which are used when transitioning from one state
to another. These are:

1. X: The desired time before a weather event (lead-in time) when we wish to begin
gathering data from the event. For example if our desired lead-in time is 1 hour,
we want to begin gathering data 1 hour before an upcoming weather event. Based
on the average predicted precipitation probability of the 3 APIs, we adjust the lead
in time for how likely rain is to occur. If it is 80% or above, we begin gathering
lead in time 30 minutes before the predicted time. If it is 25% or above, we begin

36

gathering lead in time 30 * (Average Predicted Precipitation Probability / 100)
minutes before the predicted time. If it is less than 25% we will not have any lead
in time, but as normal the system will continue to run in case there is rain we have
missed.

2. Y: The normal interval between weather predictions. This is how much time our
program waits between making predictions.

3. Z: How much time there is before the next predicted event.
4. ST: Standby time, how long the program will wait before predicting. This is

inferred in the diagram but is elaborated on here. ST is initially set equal to X
when the program starts.

These variables allow the program to switch between the states of the system creating the
following transitions:

1. When the program is on standby, when ST time has elapsed, it transitions to the
prediction state.

2. When the program is on prediction, if there is no event predicted, it transitions to
the standby state, and sets ST equal to Y.

3. When the program is on prediction, and it predicts an event, if the time until the
next predicted event is further than X but less than Y, it transitions to the standby
state and sets ST equal to Z - X.

4. When the program is on prediction, and it predicts an event, if the time until the
next predicted event is within X time, it transitions to the collection state.

5. When the program is on collection, and the ARA Framework data indicates that
the weather event is over, it transitions to the post event collection state.

6. When the program is on post event collection, it will transition back to the
prediction state without a trigger.

These variables also indicate how far to be looking ahead when predicting and

how the states should react to predicted events. The two instances this design highlights
are:

1. Based on our prediction time interval Y, we should look ahead 2Y when
predicting to minimize missed events.

2. If another event is predicted within 2X time when transitioning from post event
collection to prediction, the data from both events should be grouped as one
event.

4.3.2 Detailed Design and Visual(s)
To help ourselves and others better grasp our design, we created a component

diagram, and separated different components into small groups. Ideal phases for us to
create the programming of the design.

37

Figure 4.3.2: Component Diagram

The diagram above breaks down the overall system into 3 logic blocks:

1. Weather Prediction and Collection (Red)
2. Wireless Data Collection (Purple)
3. Data Storage and Display(Yellow)

Weather Prediction and Collection (Red):
 This logic block handles the querying and formatting of weather data from
various API’s, as well as the system overhead. First we query various forecasting API’s
and process the data to determine the probability of the next weather event occurring in
an hour. Depending on that probability, we set the frequency in which we check the
current weather at local ARA Disdrometers. When a local ARA Disdrometer detects
weather, we begin the weather data storage, and start the Wireless Data Collection
subsystem. If we have just finished collecting data, and we determine another event is
likely to occur soon, we concatenate the two events and keep collecting data, otherwise,
we stop collections. Once the weather event is determined to be over, we send the
collected data to the Data Storage and Display subsystem.

38

Wireless Data Collection (Purple):

The purple sections in the block diagram denote when we are collecting and
storing ARA Wireless Data. This data needs to be collected on a separate device than all
other processes, so this subsystem needs to be able to handle communication between
these different devices. When this subsystem is told to begin collecting data, it will
generate an id and collect data in association with that id. Following id generation, that id
is returned to the caller. When a caller tells the subsystem to stop collecting data with a
specific id, it will stop collecting wireless data in association with that id, and return the
associated data to the caller.

Data Storage and Display (Yellow):
 The yellow blocks handle the output data and formats it in a queryable format.
This module will put the output data into a hierarchical zip file as well. This zip file
structure is the format the client would like so that users would be able to access these
data files. When the weather event is finished and the data from the event is all gathered,
it will be reformatted and stored in the ARA platform’s database. This data can be
queried by users from the ARA platform which can be used for visualization and
analysis.

4.3.3 Functionality
In terms of functionality we see the datasets that have been generated from our

system to be visualized in a graphical format generated through a UI. The data can be
used to view the collected weather and wireless data in a graphical format. In order to
visualize this data we need to first discuss the functionality of the full system and how the
datasets are generated. In addition all the scripts for the system and the UI will be run on
the ARA server. These scripts should also typically be run as a service on the ARA server
such that a user would only have to launch the UI in order for the datasets to be
visualized.

First, the weather events will need to be predicted using three different weather
APIs. The average probability of a weather event occurring will be taken from the three
weather APIs. Based on the predicted probability of a certain weather event occurring
certain lead-in and lead-out data collection times will be set. Additionally, when a
weather event is predicted multiple different scripts will be triggered.

When the weather APIs predict a high probability of a weather event occurring
then lead-in time will be set and the ARA weather APIs will be checked to ensure that a
weather event is actually occurring in the specified wireless data collection location. If a
weather event is occurring then ARA wireless and weather data will begin being
collected. Next, the ARA weather API will be continuously checked every five seconds
to see if the specified weather event is still occurring. If the API determines that the
weather event has stopped then lead-out time data collection will begin. The lead-out data
collection time will be the same as the lead-in data collection time.

39

Once the data collection has been completed. The ARA wireless datasets and
weather datasets will be paired as specifying the weather event in which the dataset has
been collected. These datasets will be stored in a hierarchical ZIP file structure. This
structure has been specified by the client as all the datasets produced by the client are in
this specific structure. The path of the ZIP file of the dataset will be stored in the
MariaDB database on the server. The server will host the MariaDB database such that all
ZIP files can be stored in this database and these files can be accessed through the UI
when requested by the user.

In order to visualize the datasets we created a UI such that all the datasets that
have been collected and stored in the MariaDB database can be visualized. The way the
UI works is that it is launched on the server. It accesses the MariaDB database which then
populates the different dates on the datasets the user can choose from to visualize. The
datasets will be unzipped such that they can be used to visualize the data. The user then
picks the dataset date they would like to visualize. Once the dataset has been chosen then
there will be options of which fields that can be visualized in a graphical format. There
will be options for wireless data fields and weather data fields. For each field that is
selected a separate graph will be created. All visualizations of the graphs will be done
through the Grafana visualization tool. This tool is an open-source interactive
visualization application that can produce graphs and charts based on selected data. Once
the visualization button is selected the Grafana application will launch. There will be a
different graph created for each of the fields selected. Through this application users will
be able to visualize the graphs of the weather and wireless data that has been collected.

40

Figure 4.3.3.1: Query GUI

Figure 4.3.3.2: Grafana Graph Visualization

4.3.4 Areas of Challenge
Our solution addresses the needs of the internal and external users of the ARA

framework users. As a team, we initially had to identify the users and then figure out

41

what exactly they needed from our project. Through this process we derived many
requirements that we plan on implementing in our design. Our solution addresses the user
needs well since we have directly derived our requirements from the needs the users
wanted from the solution. We have implemented functionality that will allow the users to
query for weather data given a certain date that would allow the ARA users to determine
what the weather was like during that time. This can be visualized through the UI we
have created.

There were a few challenges we faced during the first semester of our project.
One of these challenges involved determining which lead-in time metrics will work best
for our prediction calculations. This included making sure the amount of lead-in time we
have allocated is satisfactory for our design. We found a range based on the predicted
values to assist us in getting the correct amount of lead-in time, however we feel that this
could still use further testing over a longer period of time and more weather events.
Another challenge we faced during the first semester was needing to make sure that the
metrics that we were taking during that lead-in time accurately gave us the predictions of
when a weather event will occur. For example, how well does wind-speed or temperature
as a lead-in time metric work for predicting a weather event. In terms of addressing this
concern we had different trial runs to see which metrics work best for predicting weather
events and chose to focus on precipitation.

The primary challenges we faced during the second semester came from
integrating the different elements of the project. We ran into a couple roadblocks that we
had to debug when we integrated the ARA data collection scripts and the API weather
data section. We ran into different code issues where the wrong methods were being
called or some methods were not correctly entering.

4.4 TECHNOLOGY CONSIDERATIONS
When designing our project, we had to consider the abilities and limitations of the
technology at our disposal:

ARA Framework & Servers
Strength: Client owned and created, with through documentation and resources.
Weakness: Must fit within the bounds of the existing ARA framework, both for
gathering live data and storing data on their servers. Need to consider the amount of
storage on the ARA devices.
Trade-offs: We get inside access to the ARA backend, but are limited by how much
storage space we have. Our program must also fit in with the existing ARA systems
without causing problems

Third-party Forecast APIs

42

Strength: Are pre existing, professional resources that allow us to easily get the data we
need.
Weakness: Must find free, public, APIs. The data collected from APIs will have a range
of accuracy.
Trade-offs: We have no control over the code, but we get a much wider range of data for
prediction than we could otherwise.
Solutions: Use multiple APIs to get multiple opinions on predicted weather events.

5 Testing

5.1 UNIT TESTING
 We wrote several unit tests covering both our API predictions and the systems on
the whole. The tools we used for testing were Py Test and Monkey Patch, a component of
Py Test specifically used for mocking a number of calls. A vast majority of our functions
directly interact with either APIs, direct data collection from devices (i.e. wireless data
collection), and I/O writing and reading of data from files. Monkey Patch allowed us to
bypass many of these needed calls during tests. The need to mock a large number of these
features when testing does make our tests more “brittle”, but was necessary for testing
purposes. For the most part, our unit tests are parameterized tests which test different
inputs and expected outputs of several functions allowing for significant coverage of
different paths.

5.2 INTERFACE & INTEGRATION TESTING
 Our goals for the interface and integration tests were to verify that our individual
components within our system could properly communicate with one another. We did this
by covering our critical paths. Our system runs under two primary paths, either we
properly predict an event and begin collecting data based on that, or we fail to predict and
begin collecting when our system detects a weather event is occurring. Because of this,
we have a dedicated test to ensure that we can create weather events from predictions,
that we can collect data when predictions begin, and that we can collect data when we
miss a weather event. All of these integrate numerous subsystems within our program.

5.3 SYSTEM TESTING
 Because our system runs real time and on multiple threads, full system testing can
be extremely difficult. Therefore our goal was to have sufficient coverage, both through
unit tests and integration tests focusing on either the entire prediction to event creation
pipeline, or the data collection pipeline. Additionally, we created dedicated tests for the
COTS API. Due to the unknowable nature of real time data collection, we relied on
metamorphic testing to test its functionality. All of these tests intandem we believe

43

provide sufficient coverage of our system as a whole. We have also made sure to do our
own manual testing and logging to further guarantee correctness within our system.

5.4 REGRESSION TESTING
Because we have a large number of automated tests which are able to be run to

test multiple aspects of our system, we continue to run these automated tests over time.
We will continue to add more of these tests as the development cycle continues, making
the test group set more diverse and better for regression testing. Additionally when
updating the system, we did comprehensive testing, both manual and automated, to
ensure that nothing broke and the system continued to work as intended.

5.5 ACCEPTANCE TESTING
Our team was somewhat limited with regards to our acceptance testing. Without

historical weather data from ARA, our team was unable to simulate our system running
over long periods of time, checking for expected accuracy. The best way we found to
perform our own acceptance testing was to manually check that the system was running
as intended. Once all pieces of our system were functional and connected, we allowed the
program to constantly run. With the expectation that the system performed as expected, it
would collect data when a weather event occurred. Once the event was completed, we
manually performed testing, checking the accuracy of the collected data ourselves to
what the weather was at the collected time. We also checked the API predictions accuracy
manually, looking for times in which the system did not collect data when it should have.
We did this multiple times, refining our code when we found inaccuracies or errors, and
restarting the program.

In addition to this testing, we made sure to keep in close contact with our client
and advisor about making sure that the system met the requirements that they had and
was acceptable to their standards. If we had more time and the system was able to run for
a much longer time, we would likely have collected our own complete weather datasets
to use as historical data. As complete records of what our system should be expecting, we
could perform acceptance testing far easier, looking for our desired accuracy to an exact
degree.

5.6 USER TESTING
The part of our system that Users interact with is our UI which visualizes a given

data file with a specific interval of time. The user testing for our UI involved using both
manually created test data and real weather data collected from the rest of our system. We
first made sure that our UI worked on its own, properly communicating the desired
features and data to Grafana. We made sure that Grafana correctly visualized the
requested graph when we knew the data was accurate to ensure any issues that occurred
would come from the UI and not from the rest of the system. We then used the real

44

weather data collected from our system. These tests allowed us to make sure our system
correctly formats our data and that our UI is expecting the right results from the rest of
our system. It also allowed us to test that communication between all aspects of the
system worked and that the datasets that were being collected could actually be accessed
by our UI.

5.7 RESULTS
 Our 40+ existing tests currently all pass. Additionally our system is up and
running and in the short time it has been running it has already caught 9 separate weather
events. If future bugs occur we believe that these tests should help to quickly identify the
issues and get our system back up and running. Further tests could be made with more
time and with potential accurate historical data. Our existing tests show that our project
meets the requirements sent forth to us by our client and advisor and help to guarantee
our system works as intended.

6 Implementation

6.1 OVERVIEW
Our main implementation that we had worked on was focused on the usage of

external API’s for our prediction model for when to start collecting data. We chose to use
external API’s due to concerns about costs for gathering and storing data on ARA’s
servers. The external API’s can provide us with weather data for our prediction model
without needing to be stored and gathered on ARA’s own systems. We created a state
diagram to go over the main states of the implementation. The state diagram has four
states, the first being a standby where we wait for the prediction model. The second is the
prediction state where we evaluate if we need to begin collecting. Then we have the
collection state where we begin collecting data. Finally we have the post event collection
where we process the data.

45

Figure 6.1: State Diagram

We also created a task description of the different components of the initial
design. The first section of components are the red components which The red sections
handle the querying and formatting of weather data. We first query the ARA weather data
API then process that data for use in determining if we need to begin collecting the
wireless data. The next section is purple which records and formats the data for use in the
prediction model for if we need to keep collecting both weather and wireless data. The
next section is green which acts as the gatekeepers that start or end various processes for
the program such as when to start collecting weather data or if we need to wait. The last
section is yellow which processes the data into readable formats or graphs to show
correlation between weather events and wireless data performance.

46

Figure 6.2: Task Decomposition

For each of the API’s that we wanted to use in the final project we created scripts
that gathered different data values such as temperature, wind speed, humidity, and wind
direction. Each of these data points were stored away into text files that would be sent to
the prediction model for use in that system. These text files were then used to create
graphs that showed absolute error of the graph.

47

Figure 6.3: 3D Meteo Temperature Graph

Figure 6.4: Temperature Graph for 3 Different APIs

When analyzing the data from the graphs our team had noticed that there were
going to be moments of high inaccuracy. Our team also had other issues with the APIs
such as them not being specific enough to the locations of ARA base stations. The
external weather APIs could be gathering their data miles away from the ARA base
station that we want to turn on. This can lead to moments where the base station is being
hit with rain so we want to collect data but the external API weather station is not being

48

hit with rain so the system never kicks on. From this we recognize that a reassessment of
the API’s implementation is needed to improve the accuracy of prediction.

6.1.1 Weather Prediction and Collection

The implementation of the weather prediction scripts include first creating a script
that will predict when weather events will occur. The team does this by using three
weather prediction APIs. As listed previously the ones we chose were MeteoWeather,
Tomorrow Weather and the National Weather Service API. The team accesses the
weather predictions by using each weather services’ APIs and then sending that hour's
specific weather prediction to the activation script. There the average of the three APIs
weather predictions is taken. Each of the three APIs are checked and then every hour the
average of the three are taken. That average value is then taken and used to determine the
lead-in time of when we want to start the ARA weather collection before a weather event
occurs.

Based on the average probability of a certain weather event occurring then we
will determine the lead-in time for ARA weather and wireless data collection. When the
activate script determines that average value is greater than or equal to 80% then it will
begin collecting ARA wireless and weather data with a lead-in time of 30 minutes before
the weather event is predicted to occur. Otherwise, if the average value is greater than or
equal to 25% then the lead-in time is set to the percentage of the average value multiplied
by 30 minutes. This will set the lead in time for the next predicted weather event the APIs
see. Additionally, the lead-out time will also be determined by the lead-in time. For
example, if the lead-in time is 30 minutes then the lead-out time for that collection event
will also be 30 minutes. Then continue normal weather prediction API checking until the
next weather event is predicted.

 The ARA weather API is also utilized to check if there are any weather events
happening that the weather prediction scripts missed. The ARA weather API gets
triggered every five seconds because the API updates every six seconds. When there is an
event predicted by the weather prediction APIs then the ARA weather API will check if
there is still the weather event happening. The data will continue to be collected and if the
ARA weather API determines if there is still a weather event ongoing then data will
continue to be collected. However, if the ARA weather API determines there is no longer
a weather event ongoing for 15 minutes then stop collecting.

6.1.2 Wireless Data Collection

This section of the system handles the collection of COTS Wireless data within
ARA Server, as well as the Flask Application that communicates with the rest of our
system. The subsystem runs on a separate server than all other subsystems, specifically,
it runs on the same server where the wireless data collection occurs. This subsystem
integrates with the other subsystems via a Flask Application. This application has two
API endpoints, start_collection and end_collection, these endpoints allow the Weather

49

Prediction and Collection subsystem to control when we are collecting Wireless Data.
When the start_collection endpoint is hit, Wireless Data Collection is started and the
caller is given an associated id to the collection. When the end_collection endpoint is hit
with a valid id, Wireless Data Collection is ended and the wireless data collected with the
associated id is sent to the caller.

This current implementation works very well as it allows us to easily start and
stop wireless data collection on demand from the Weather Prediction and Collection
subsystem without impacting other end users. Additionally, this solution is particularly
effective as it allows other users to hit this endpoint and get the same data for themselves.
This allows this particular subsystem to be useful outside of the context of our problem
statement. We have proven this by having multiple users simultaneously collect data
from the same endpoint without impacting the others. One current downside of the
system is that each ids data is written to a separate file on the server, thus, if multiple
users are collecting simultaneously, a large amount of redundant data is being stored.
Currently, we are looking into a rewrite that will stop the writing of redundant data.

6.1.3 Data Storage and Display
This part of the system handles the renaming and storage of weather and wireless

data files that are collected by the system. This part takes inputs of the weather data file
path, the COTS data file path, the location code (that we have designated), the start time
of the collection and optionally some keywords that are used to name the folder and files
to meet ARA Standards.

The current implementation starts by renaming the weather and wireless data files
and then are placed in a specifically named folder. It is compressed into a zip file as per
the client’s instructions. The zip file is stored in a folder on the ARA server. The system
also stores the file path of the zip file into a MariaDB database.

To allow our users to visualize the data graphically, we also developed a UI in the
form of a web application hosted on the ARA server. This web application allows the
user to select a dataset (the list of optional datasets are pulled from MariaDB and are
listed based on date) and select specific fields from the dataset to visualize. These fields
can include disdrometer data such as temperature and rain rate along with COTS data
such as SINR. Once the user has selected the fields they wish to view, a new page is
opened showing the generated Grafana dashboard with individual visualizations for each
selected field. The user will need to log into the server’s local instance of Grafana using
the AraResearcher login credentials included in the User Guide. After three hours of
inactivity, the web application will mark the generated dashboards to be deleted.

50

6.2 DESIGN ANALYSIS

Our design overall works well. The weather prediction and collection component
is able to get values from external API’s and average their precipitation values to send off
to the weather and wireless data collection component. This component works well due
to it being thoroughly tested to ensure that data values from the external APIs are being
collected. As for the wireless data collection component, it is properly triggered by the
weather collection and is paired with the weather data collected. This component works
well because it connects to ARA devices to gather and record that data points that will be
packaged together Lastly for the data storage component it works well in that it is
properly able to receive paired data files, zip them together and store them, and store their
file paths to later be referenced by the UI for displaying.

 One part of the project that could use some improvement is possibly the detection
of other types of weather events. Further testing can be done to ensure that the system
works. Another part of the project that does not work as well as expected is the weather
prediction component of the project. There are times where a weather event is very likely
happening or happened but the prediction might not send the signal to start gathering data
leading to no lead in data being collected. This is due to the various external API’s
sometimes being accurate. For example, the Tomorrow Weather API will not send out a
percentage chance of precipitation until the precipitation event is likely already
happening. What we could have done was more testing of the API’s to see what aspects
of them are accurate and can be used in our project. More testing could be done with the
API’s to provide some weight to certain aspects of them to better increase the accuracy of
our own prediction model.

7 Ethics and Professional Responsibility
Through the course of this project our group has thought about engineering ethics

and professional responsibility. Initially we had come up with possible ethical concerns
that are applicable to our project. We used the exercises provided in the first half of senior
design to help generate ethical codes to follow and also plans on how to abide by the
ethical codes. Throughout the second semester our ethical concerns have not changed due
to us already adhering to our code of ethics. While working on the project there were no
new ethical concerns we had as a team therefore the sections below have not changed.

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

Area of
Responsibility

Definition Code of Ethics Adherence to the
Code

51

Public Create products and
services that benefit
the public.

1.01. Accept full
responsibility for
their own work.

Our team has
adhered to this code
throughout our
project. Everyone is
assigned tasks and
are responsible for
completing that task
at a reasonable time
and quality.

Client and
Employer

Perform work that
aligns with the
interests of the
client and
employers.

2.03. Use the
property of a client
or employer only in
ways properly
authorized, and
with the client’s or
employer’s
knowledge and
consent.

Our team has
contacted and
signed up for
various accounts for
third party APIs to
use them for parts
of the project. We
have also talked to
our client to ensure
that these third
party APIs are
alright to use. We
have also contacted
our client to gain
access to their own
systems so we can
run our project’s
prototypes on them.

Product Products created
meet specified
requirements and
standards.

3.07. Strive to fully
understand the
specifications for
software on which
they work.

Our team has
contacted our
clients many times
to better understand
their systems so our
project doesn’t
interfere with the
other processes that
are on the system.
We wanted to

52

ensure that our code
would not prevent
any other users
from gathering
weather data and
wireless
performance data

Judgement Maintain integrity
about any
assumptions and
judgments made in
the project.

4.03. Maintain
professional
objectivity with
respect to any
software or related
documents they are
asked to evaluate.

Our team has
ensured that our
documents have
been as accurate as
possible when
describing our
progress on our
project.

Management Managers and
leaders ensure an
ethical approach to
the management of
software.

5.02. Ensure that
software engineers
are informed of
standards before
being held to them.

While our team
doesn’t necessarily
have a manager we
as a team still
define the standards
set out for each
other when
completing tasks.

Profession Advance the
integrity and
reputation of the
profession with the
interests of the
public.

6.08. Take
responsibility for
detecting,
correcting, and
reporting errors in
software and
associated
documents on
which they work.

Our team reviews
documents and
code that are
created before we
finalize them. If
there are any
inaccuracies or
parts that need to be
changed then
requests for change
are created and
carried out to
ensure that the
product meets the

53

end requirements.

Colleagues Be fair and
supportive towards
colleagues.

7.04. Review the
work of others in an
objective, candid,
and properly-
documented way.

Whenever our team
reviews another
member's work, if
there are any
changes that need
to be made we state
them in an
objective and
constructive way.
Oftentimes we offer
to help or give
some suggestions.

Self Participate in
learning more about
the profession of
software
engineering and an
ethical approach to
the profession.

8.03. Improve their
ability to produce
accurate,
informative, and
well-written
documentation.

Our team has used
senior design I as a
learning tool to
create and design
well-written
documentation.
These skills are
invaluable in the
professional work
force and are
always needed for
any job so being
able to make
mistakes and learn
from them without
too much
consequence is very
important.

Table 5: Areas of Professional Responsibility

Areas Done Well

One area that our team is doing well in is the product area. Our team has been able to
produce high quality products for our client in a reasonable amount of time. Any

54

suggestions the client has in regards to our current deliverables is incorporated in by the
next weekly meeting. We understand what needs to be done for our client and when it
needs to be done. This shows that our team is motivated when it comes to doing work and
is also diligent when it comes to ensuring that our deliverables meet our clients needs.

Areas for Improvement

One area that our team can improve on is the client and employer area. There were
several times where there was miscommunication between our team and the client as to
the scope and limitations of our project. Our team could have done a better job in
reaching out to our client more often to ensure that we fully understood the scope and
limitations of the project. In the future we plan to have more meetings and go to our
clients office hours if we have questions about certain system requirements.

7.2 FOUR PRINCIPLES

 Beneficence Nonmaleficence Respect for
Autonomy

Justice

Public Health,
Safety, and
welfare

Design helps
researchers gather and
analyze both weather
data as well as
wireless device data.

Design works on
existing ARA systems
and can be easily
expanded with ARA’s
deployment of other
base stations.

Design allows for
users to provide
feedback. Users can
also tailor the project
to fit their local area.

Design promotes
access to all users
with permissions.

Global, cultural,
and social

Design helps gather
data to improve
transmission of
wireless data in rural
areas.

Design allows a
variety of users to use
our project. Different
cultures and groups of
people can use the
project.

Design allows users to
use the project for
specific purposes.
They can gather data
for their local area.

Implementation is
focused on access for
educational purposes.

Environmental Design will help
research in rural
environments.

Implementation will
slightly disrupt the
environment. The
only impact would be
the base stations that
need to be set up in
that local area.

Design can be tailored
to the individual
environment where
the base station is set
up.

Design does not
disturb one type of
habit over others.

55

Economic Design could help to
speed up research
regarding solutions to
rural broadband
connections.

Design has not a large
impact on the
economy. It could
affect certain
companies that offer
products for
broadband
connection.

Design has some costs
for the client
currently. These costs
are mostly around
computation costs for
gathering and parsing
wireless data.

Design would be
usable for all. As long
as users follow ARA’s
user agreements they
are allowed access to
ARA’s system.

Table 6: Broader Context and Four Principles

One context principle pair that is important to our project is the global, cultural, and
social beneficence pair. This pair is important because our project will be used by a
variety of other users. For now the users in our current scope are internal users in ARAs
system and external users. When it comes to the principle pair we are more focused on
the external users since they will have different needs and uses for our project. We are
working hard to ensure that our project will be useful for these different needs and uses
by making sure that our project is easy to use and provides reliable and accurate
information.

One context pair that our project is lacking is economic respect for autonomy. Our
current project has some cost for our current client. The costs of our project comes from
the computations needed to gather and parse the wireless data, and the storage of some of
that data to use in our prediction models. These costs can quickly grow as more users are
on ARA’s system as there will be many calls to not only our project but other experiments
on the system. To mitigate these costs our team is only storing enough data to reliably
predict weather events and are ensuring that we are only gathering wireless data
whenever we are certain that a weather event is occurring.

7.3 VIRTUES
Team Virtues

1. Commitment to quality: This virtue is all about creating quality work which is
something that our team strives for. We all value our work and want to ensure that
it meets the requirements set out by our clients as well as our own personal
standards. We as a team review and critique each other’s work to find any areas
for improvement.

2. Responsibility: This virtue is about each team member taking responsibility for
the work that they have done. As a team we make sure that work is divided evenly

56

and each person knows what work they need to do. If one person is struggling
with their work we offer help to them.

3. Integrity: This virtue is about being honest with the work that each person has
done. Each person in the group knows what work they must do and if they are
having issues completing their work then we appreciate honesty about how they
are struggling with the work. This integrity is important since we want to ensure
that the work still gets done at an acceptable quality.

Individual Virtues

Aidan Gull

 I have demonstrated friendliness. It is important to me because I want to have a
solid team dynamic as well as a friendly work environment. I have demonstrated this by
offering assistance whenever needed.

 I have not demonstrated industriousness. It is important to me because I would
like to be more focused and get more work done for the team. I can demonstrate this by
removing any possible distractions from my work areas to help me stay on task.

Adam Fields

 I have demonstrated responsiveness. It is important to me because the team
contract requires it of me. I have demonstrated this by paying close attention to the team
discord and helping clarify things as soon as possible.

 I have not demonstrated resolution in a few cases. It is important to me because
the team expects me to do what I have said that I would do. I can demonstrate this by
doing what I have said I’m going to do without fail.

Alex Chambers

 I have demonstrated resolution. It is important to me because when someone
commits to working on something, there is a certain expectation that they will complete
that work. I have demonstrated this by generally working to completion on various code
components of our project.

 I have not demonstrated timeliness. It is important to me because when working
on a task, it is important to complete it at a convenient time so as not to interfere with
others' progress. I can demonstrate this by striving to be more productive during normal
working hours rather than doing a majority of my work later into the night.

57

Alexander Christie

 I have demonstrated communication. It is important to me because
communication is the key to success in a project like this. With so many moving parts
and pieces that need to be completed, strong communication with our team, client, and
advisor is necessary. I have demonstrated this by responding promptly to team messages
and announcements, alerting my team members to progress I’ve made on different tasks,
and serving as the head of client communications.

 I have not demonstrated competence. It is important to me because being able to
complete work at an adequate pace is important, especially if I’ve previously made
assurances a deadline could be met. I can demonstrate this by being more aware of my
limitations and working to improve my skills.

Colin Kempf

 I have demonstrated order. It is important to me because I want to keep things
organized and easy to find so the team won’t get caught up on where things are or
problems arriving from clarity. I have demonstrated this by keeping our documentations
structured and by making sure that we follow similar formats throughout our work.

 I have not demonstrated silence. It is important to me because our team often
needs to focus and remain on task to get work done. I can demonstrate this by talking less
with others in distracting conversations and staying on task.

Nisha Raj

 I have demonstrated cooperativeness. It is important to me because in order to
work well within a team all members need to cooperate with each other. I have
demonstrated this by making sure all voices within our team are heard and by ensuring
that all team members have a chance to express their opinions and views on team matters.

 I have not demonstrated resourcefulness. This virtue is important to me and the
team because we need to be able to find innovative solutions for any problems that might
arise. I can demonstrate this by working to think of more out of the box and unique
solutions to problems that come up while we are working on our project.

58

8 Conclusions

8.1 SUMMARY OF PROGRESS

Through our work, our team has successfully addressed the project's overall goals that
were set out by our client and advisor. With our project we have designed, developed, and
tested an application that can use external API’s to forecast predictions that are used to
inform ARA’s systems to start collecting both weather and wireless data. Our team found
3 different APIs to use for forecasting data which address our needs and requirements for
predicting weather events. Our group has tested our script for accuracy and have ensured
that our project is able to successfully complete its given task. We feel our testing of our
project has been through, but it would benefit from additional testing overtime as it
requires weather events outside our control.

8.2 VALUE PROVIDED

The design our group has created sets out to meet all of our users’ needs. It accomplishes
this task fairly well within the bounds of the project's requirements. The design takes
priority using forecast predictions to inform the collector, which means that other
problems such as lead-in time our design attempts to address are sometimes less accurate.
However our design does take this into account, attempting to make up for errors of false
positives and negatives. In the broader context, our design fits in with the expectations of
our client and advisor.

There are several ways we can see the value our design provides. For starters, it includes
false positive and negative checks for predictions. This allows us to more accurately
collect data according to our users needs, ensuring that even when API predictions are
wrong, we can collect some of the data we might have otherwise missed. Additionally,
our design is able to recognize closely timed weather events as one event. This allows for
more seamless data which can be more easily understood and visualized by users after
collection. Lastly, our design handles formatting the data into a UI for the user to be able
to visualize the gathered data. This addresses how the user will be able to interact with
our design with ease.

8.3 NEXT STEPS

There are several next steps ARA could take to further our project after our group's
completion of this course. The first step would be to continue testing. Because our script
monitors live weather data, our script will need to be tested in all kinds of weather events.
It also needs to be tested for extended periods of time to ensure its continued
functionality. The second step would be to integrate our scripts with the existing ARA
experiments system. This would allow for more seamless access to running our scripts

59

and would centralize it with the rest of the ARA systems. The third step would be to
improve the accuracy of the API predictions. This could be done either by looking at the
accuracy of the current three APIs, looking at any outliers which bring down the
accuracy, or by adding new APIs to get a better averaged prediction. The last major next
step would be to add our scripts to additional ARA location weather and wireless data
collection sites. This would involve slight adjustments for the data we expect to collect
but should be mostly a smooth transition.

9 References
[1] Tomorrow.io APIs, Tomorrow, https://www.tomorrow.io/weather-api/ (Accessed Sept.
25, 2024).

[2] Open-Meteo.com Free Open-Source Weather API, Open-Meteo,
https://open-meteo.com/ (Accessed Sept. 25, 2024).

[3] API Web Service, National Weather Service, https://weather-gov.github.io/api/
(Accessed Sept. 25, 2024).

[4] “How to Create a Feedback Loop: Step-By-Step Guide With Best Practices”,
Userpilot, https://userpilot.com/blog/how-to-create-a-feedback-loop/ (Accessed Dec. 2,
2024).

[5] “The Ultimate Guide to Building a Functioning Feedback Loop Model”, Fibery,
https://fibery.io/blog/product-management/feedback-loop-model-guide/ (Accessed Dec.
2, 2024).

10 Appendices

APPENDIX 1 – OPERATION MANUAL
 In order for a user to use our project they would need to get access to ARA
servers that host our code. To get access to the ARA servers the user would have to
contact ARA and create a user account with them. Once the account is created the user
can reach out to an ARA representative to get specific access to the server that contains
the code. This access will be accompanied with guides on how to use the server and
access its contents.

 Now that the user has access to the server that our code is running on, the user can
view and utilize the Weather Data Visualization UI. The user does not have to manually
start the web application (unless it is down) and doesn’t even need a connection

60

established to the ARA server itself. All the user needs to access the UI is a local machine
with a web browser installed and a VPN connection to the Iowa State network.

From the user’s local machine, they can open a browser and access
http://10.188.1.1:20401/ which hosts the UI. Once the user has access to the local host
UI, they can select what data they want to visualize. Within the UI, the user first can
select the gathered dataset from a given weather event. Then there are several different
weather features the user can select to have visualized on Grafana. Multiple features can
be selected at a time. Then the user can select as many of these different features as they
want. Once satisfied with their selections, the user clicks the Visualize button at the
bottom of the page. This will automatically take the user to the Grafana graph generated
from their data and feature selections. The user may need to login utilizing the
AraResearcher account (username: AraResearcher ; password: Password).

Step 1: Navigate to http://localhost:5000/

Step 2: Pick dataset to visualize and click Select

http://localhost:5000/

61

Step 3: Select fields from Disdrometer and COTS and click Visualize

Step 4: Login with Grafana AraResearcher

Features Available for Visualization:
1. Average Particle Speed
2. Date Time - Selected by default

62

3. Humidity
4. Kinetic Energy
5. MOR Visibility
6. Particles Detected
7. Pressure
8. Radar Reflectivity
9. Rain Absolute
10. Rain Accumulated
11. Rain Intensity
12. Rain Rate
13. Raw Volume Equivalent Diameter
14. Snow Depth Intensity
15. Temperature
16. Volume Equivalent Diameter
17. Wind Direction
18. Wind Speed

APPENDIX 2 – ALTERNATIVE/INITIAL VERSION OF DESIGN
One design we first considered after talking to our was to always collect and

determine afterwards if there was a weather event that took place. We scrapped this idea
because it did not align with client specifications.

Another design we considered used a feedback loop to more accurately predict
weather. We would use collected ARA data to then be used as a predictor for determining
future weather events by helping to define what, for example, “rain” looks like. The
concept was scrapped for being way too complicated for the time and skill constraints of
the project.

APPENDIX 3 – CODE

https://git.ece.iastate.edu/sd/sdmay25-18

APPENDIX 4 – TEAM CONTRACT

Team Members

1) Aidan Gull

2) Colin Kempf

3) Adam Fields

4) Nisha Raj

https://git.ece.iastate.edu/sd/sdmay25-18

63

5) Alexander Christie

6) Alexander Chambers

Required Skill Sets for Your Project

Front-End development: Developing the front end so that users can query weather data
and the wireless signal data.

Linux Experience: Running processes in the background and piping output into a file that
can be parsed.

Python Development: The scripts that we will be creating in order to correlate weather
data and wireless signal data will be in Python. Many ARA APIs already utilize Python
for scripting so this was the preferred language.

Experience with ARA: Familiarity, with the ARA platform and different experiments that
can be run on the testbed.

Data Analysis: Understanding how to assess and manipulate gathered data to inform our
development, create an algorithmic feedback loop, and format for the final deliverable to
the end user.

Skill Sets covered by the Team

Front-End Development: Adam, Colin, Alex Cha., Aidan

Linux Experience: Adam, Nisha, Alex Chr., Alex Cha., Aidan

Python Development: Nisha, Alex Chr., Colin, Aidan

Experience with ARA: Nisha, Alex Chr.

Data Analysis: Colin, Adam

Project Management Style Adopted by the team

Our team uses an Agile methodology since we have team meetings weekly where we
collaborate as a team. We also speak with our advisors on a weekly basis where we work
and discuss breaking down tasks into smaller components. The weekly meetings help
facilitate consistent feedback from our client and help us stay on track with our project.

Team Procedures

1) Day, time, and location (face-to-face or virtual) for regular team meetings:
Tuesdays Wendsdays, and Thursdays from 2-4pm at the library (face-to-face)

64

2) Preferred method of communication updates, reminders, issues, and scheduling
(e.g., e-mail, phone, app, face-to-face): Discord

3) Decision-making policy (e.g., consensus, majority vote): Majority Vote

4) Procedures for record keeping (i.e., who will keep meeting minutes, how will
minutes be shared/archived): Team Recorder: Colin Kempf, Archived: Stored in
documents in a team shared Google Drive.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team
meetings: We expect all members to attend all meetings unless some unforeseen
circumstances arise or they communicate a reasonable reason for not being able to
attend. We also expect all members to contribute equally to the project and try to
split up tasks depending on the member's strengths.

2. Expected level of responsibility for fulfilling team assignments, timelines, and
deadlines: Everyone should roughly have equal responsibilities. Do what you
commit to within the timeline specified, if issues arise, communicate with team
members and ask for help.

3. Expected level of communication with other team members: We expect steady
communication of schedule conflicts, development progress, and ideas among the
team through our discord.

4. Expected level of commitment to team decisions and tasks: Strong commitment to
the team, decisions, and tasks. Communicate with the team during the decision
making process and talk about any disagreements and differences in opinions.

5. Strategies for supporting and guiding the work of all team members: We will use
consistent communication to ensure that the team is organized and support is
extended to individuals who need additional help on their tasks.

6. Strategies for recognizing the contributions of all team members: Give positive
feedback when team members do a good job on a project. Give team members the
correct credit for their contributions.

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

Alex Chambers: Individual Component Designer

65

Alexander Christie: Client Interaction

Adam Fields: Data Formatting

Nisha Raj: Team Lead

Aidan Gull: Component Integration

Colin Kempf: Documentation

2. Strategies for supporting and guiding the work of all team members:

Our core strategy for supporting and guiding the work of all team members is having
frequent team meetings. During the meetings, everyone is able to update their progress
and share their work. This will help everyone to be on the same track and keep up to date
with where others are at.

3. Strategies for recognizing the contributions of all team members:

Our strategy for recognizing the contributions of all team members is making sure that
each person receives credit for their individual parts. We want to ensure that others
outside of our group know of our team members' contributions so that they can get
validation from others. This includes recognizing them during meetings with our client
and advisor, the industry review panel, and the poster presentation.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.

Alexander Christie: I have industry experience utilizing Python scripts to automate
complex tasks. Also, through my experience with acquiring a Technical Communications
minor, I’ve gained valuable skills in technical document writing and professional
communication.

Alexander Chambers: I have 3 semesters of research experience utilizing python
scripts. Additionally, I have had 3 summer internships giving me a lot of experience
working on and producing commercially viable code.

Nisha Raj: I have done previous research with the ARA team so I have some
background experience in their framework and their ARA portal. I have industry
experience working in wireless communications. I also have a minor in cybersecurity so I

66

have experience in Linux and security measures the team could take to keep the data we
collect secure.

Aidan Gull: I have some industry experience working on the backend of various
systems. I have also worked with python and frontend development that would be useful
for this project.

Colin Kempf: I have industry experience with gps devices from my time doing an
internship with Samasung. I also am getting a Data Science minor along with my major
so I have experience handling and analyzing data.

Adam Fields: I have industry experience with monitoring wireless connections. I am
also minoring in Cyber Security.

2. Strategies for encouraging and support contributions and ideas from all team members:

Give positive feedback when team members do a good job on a project. Give team
members the correct credit for their contributions.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how
will a team member inform the team that the team environment is obstructing their
opportunity or ability to contribute?)

The best way to inform the team of this issue is to communicate in person with the team
during our meetings on Fridays. Members can also bring it up in the Discord chat. The
team can address the issue and analyze what is causing it and how to go about resolving
the issue. The goal of the team is to make sure every team member is heard and has an
equal say in all the decisions and projects.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:

Complete deliverables as they arise, meet expectations of our client, set ourselves up for
success next semester. Make sure we are making progress in terms of implementing the
software components that we had planned out from the previous semester.

2. Strategies for planning and assigning individual and team work:

Assign tasks based on individual skills and team members schedules. Work together to
determine who is best suited to approach what and who may need more help based on
difficulty and time. Additionally, try to work together on larger tasks that may be more
involved and need full team collaboration.

67

3. Strategies for keeping on task:

Make sure the team doesn’t get off track by talking about unrelated topics. This can be
achieved by keeping each other accountable when someone goes off track. The team
needs to work together to bring everyone back to working on the related task at hand.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

First, try to determine the cause of the issue and resolve things internally by
communicating. Speak with team members and see what is going on and why the
infractions are happening. Make it clear with team members that this is a team
project and everyone needs to evenly contribute in order to achieve the end goal,
and let them know that by participating in these infractions they are letting the
team down and even jeopardizing the project.

2. What will your team do if the infractions continue?

If the infractions continue then the team will speak with the advisors and the
professors about the team members' continued infraction and how it is negatively
affecting the productivity of the team.

**

a) I participated in formulating the standards, roles, and procedures as stated in this
contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.

1) Aidan Gull DATE 4/3/2025
2) Colin Kempf DATE 4/3/2025
3) Adam Fields DATE 4/3/2025
4) Alexander Christie DATE 4/3/2025
5) Alexander Chambers DATE 4/3/2025
6) Nisha Raj DATE 4/3/2025

	Table of Contents
	List of figures/tables/symbols/definitions
	FIGURES AND TABLES
	IMPORTANT DEFINITIONS AND TERMS

	1 Introduction
	1.1 PROBLEM STATEMENT
	1.2 INTENDED USERS

	2 Requirements, Constraints, And Standards
	2.1 REQUIREMENTS AND CONSTRAINTS
	2.2 ENGINEERING STANDARDS

	3 Project Plan
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.4 PROJECT TIMELINE/SCHEDULE
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	3.6 PERSONNEL EFFORT REQUIREMENTS

	4 Design
	4.1 DESIGN CONTEXT
	4.1.1 Broader Context
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity

	4.2 DESIGN EXPLORATION
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	4.3 FINAL DESIGN
	4.3.1 Overview
	4.3.2 Detailed Design and Visual(s)
	4.3.3 Functionality
	4.3.4 Areas of Challenge

	4.4 TECHNOLOGY CONSIDERATIONS

	5 Testing
	5.1 UNIT TESTING
	5.2 INTERFACE & INTEGRATION TESTING
	5.3 SYSTEM TESTING
	5.4 REGRESSION TESTING
	5.5 ACCEPTANCE TESTING
	5.6 USER TESTING
	5.7 RESULTS

	6 Implementation
	6.1 OVERVIEW
	6.1.1 Weather Prediction and Collection
	6.1.2 Wireless Data Collection
	6.1.3 Data Storage and Display

	6.2 DESIGN ANALYSIS

	7 Ethics and Professional Responsibility
	7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	7.2 FOUR PRINCIPLES
	7.3 VIRTUES

	8 Conclusions
	8.1 SUMMARY OF PROGRESS
	8.2 VALUE PROVIDED
	8.3 NEXT STEPS

	9 References
	10 Appendices
	APPENDIX 1 – OPERATION MANUAL
	APPENDIX 2 – ALTERNATIVE/INITIAL VERSION OF DESIGN
	APPENDIX 3 – CODE
	APPENDIX 4 – TEAM CONTRACT

